Вариант № 32196

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 331
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­си­нус x конец дроби не опре­де­ле­на в точке:



2
Задание № 1029
i

Вы­ра­зи­те 737 см 8 мм в мет­рах с точ­но­стью до сотых.



3
Задание № 573
i

Среди точек O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , B левая круг­лая скоб­ка 5;0 пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , D левая круг­лая скоб­ка 0; минус 5 пра­вая круг­лая скоб­ка , E левая круг­лая скоб­ка минус 7;5 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:



4
Задание № 574
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 7, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4 минус целая часть: 7, дроб­ная часть: чис­ли­тель: 17, зна­ме­на­тель: 24 пра­вая круг­лая скоб­ка умно­жить на 4,8 минус 0,7.



5
Задание № 425
i

Если 10 в квад­ра­те умно­жить на альфа =233,64168, то зна­че­ние α с точ­но­стью до сотых равно:



6
Задание № 426
i

Число 125 яв­ля­ет­ся чле­ном ариф­ме­ти­че­ской про­грес­сии 2, 5, 8, 11, ... Ука­жи­те его номер.



7
Задание № 997
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.



8
Задание № 1065
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.



9
Задание № 189
i

Вы­ра­зи­те x из ра­вен­ства  дробь: чис­ли­тель: 2 плюс y, зна­ме­на­тель: 5 конец дроби = дробь: чис­ли­тель: x минус y, зна­ме­на­тель: 15 конец дроби .



10
Задание № 460
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .



11
Задание № 281
i

Най­ди­те зна­че­ние вы­ра­же­ния 240 умно­жить на дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 240 конец дроби .



12
Задание № 1195
i

Пло­щадь па­рал­ле­ло­грам­ма равна 4 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , его сто­ро­ны равны 6 и 2. Най­ди­те боль­шую диа­го­наль па­рал­ле­ло­грам­ма.



13
Задание № 403
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 6, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 4. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.



14
Задание № 1137
i

На сто­ро­нах квад­ра­та пло­ща­дью 25 от­ме­ти­ли от­рез­ки дли­ной x. Со­ставь­те вы­ра­же­ние для опре­де­ле­ния пло­ща­ди за­штри­хо­ван­ной фи­гу­ры.



15
Задание № 435
i

Ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та умно­жить на x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 в сте­пе­ни 5 умно­жить на 24 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та конец дроби равен:



16
Задание № 526
i

Какая из пря­мых пе­ре­се­ка­ет гра­фик функ­ции y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 4x плюс 9 в двух точ­ках?



17
Задание № 767
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  4, AB  =  8, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та .



18
Задание № 858
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  16 и AO  =  12, то длина сто­ро­ны AC равна:



19
Задание № 589
i

Ав­то­мо­биль про­ехал не­ко­то­рое рас­сто­я­ние, из­рас­хо­до­вав 24 л топ­ли­ва. Рас­ход топ­ли­ва при этом со­ста­вил 9 л на 100 км про­бе­га. Затем ав­то­мо­биль су­ще­ствен­но уве­ли­чил ско­рость, в ре­зуль­та­те чего рас­ход топ­ли­ва вырос до 12 л на 100 км. Сколь­ко лит­ров топ­ли­ва по­на­до­бит­ся ав­то­мо­би­лю, чтобы про­ехать такое же рас­сто­я­ние?


Ответ:

20
Задание № 410
i

Диа­го­на­ли тра­пе­ции равны 8 и 15. Най­ди­те пло­щадь тра­пе­ции, если ее сред­няя линия равна 8,5.


Ответ:

21
Задание № 1011
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 10, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

22
Задание № 262
i

Пусть (x; y)  — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 5x минус y=5,5x в квад­ра­те минус xy плюс x=12. конец си­сте­мы .

Най­ди­те зна­че­ние 5yx.


Ответ:

23
Задание № 413
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 3 м, M2O = 11 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?


Ответ:

24
Задание № 294
i

Най­ди­те 4x_1 умно­жить на x_2, где x_1, x_2  — абс­цис­сы точек пе­ре­се­че­ния па­ра­бо­лы и го­ри­зон­таль­ной пря­мой (см.рис.).


Ответ:

25
Задание № 1322
i

Функ­ция y  =  f(x) опре­де­ле­на на мно­же­стве дей­стви­тель­ных чисел  R , яв­ля­ет­ся не­чет­ной, пе­ри­о­ди­че­ской с пе­ри­о­дом T  =  10 и при x при­над­ле­жит левая квад­рат­ная скоб­ка 0;5 пра­вая квад­рат­ная скоб­ка за­да­ет­ся фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те минус 15x. Най­ди­те про­из­ве­де­ние абс­цисс точек пе­ре­се­че­ния пря­мой y  =  12 и гра­фи­ка функ­ции y  =  f(x) на про­ме­жут­ке [ −13; 7].


Ответ:

26
Задание № 596
i

Най­ди­те сумму кор­ней урав­не­ния

| левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 12 пра­вая круг­лая скоб­ка | умно­жить на левая круг­лая скоб­ка |x минус 4| плюс |x минус 14| плюс |x минус 9| пра­вая круг­лая скоб­ка =11 левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 12 минус x пра­вая круг­лая скоб­ка .


Ответ:

27
Задание № 777
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |6x минус 12| минус |4x минус 18|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.


Ответ:

28
Задание № 118
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 5S.


Ответ:

29

30
Задание № 960
i

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 равен 432. Точка P лежит на бо­ко­вом ребре CC1 так, что CP : PC1 = 2 : 1. Через точку P, вер­ши­ну D и се­ре­ди­ну бо­ко­во­го ребра AA1 про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пря­мо­уголь­ный па­рал­ле­ле­пи­пед на две части. Най­ди­те объём мень­шей из ча­стей.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.